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It is well known that a Boolean algebra B is atomic (atomistic) iff the interval
topology on B is Hausdorff. But this no longer holds for orthomodular lattices
(quantum logics). There exist (even complete) atomic orthomodular lattices the
interval topology of which is not Hausdorff. We show that another characterization
of atomicity for Boolean algebras is the following: A Boolean algebra B is atomic
iff B has separated intervals. Furthermore, we show that the interval topology
on a complete orthomodular lattice L is Hausdorff iff L has separated intervals
iff L is atomic and it has separated intervals. An orthomodular lattice L with
orthomodular MacNeille completion L has separated intervals iff L is atomic and
it has separated intervals iff the interval topology on L is Hausdorff.

1. PRELIMINARIES

Recall that the interval topology t: on a poset P is the smallest topology
in which all closed intervals

[a) = {x € Pla < x}, (a] = {x € Plx < a}
[a, a] = {a}, [a,b] = {x € Pla < x < b}, and P

are closed sets. A base for the closed sets is then the collection of all finite
unions of such intervals. Thus the set complements of finite unions of closed
intervals generate the open base of t;. Evidently, t; on any poset P is 71 (each
singleton is closed in T;).

By theorem of Frink (1942) the interval topology T; on a lattice is
compact iff L is complete. Observing that a compact Hausdorff topology
is always normal, we infer that the separation axioms Hausdorff, regular,
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completely regular, and normal are equivalent for the interval topology T; on
every complete lattice.

Every poset P can be embedded into a complete lattice. A complete
lattice P into which P is embedded is called a MacNeille completion of P
if P is supremum and infimum dense in P (i.e., for every x € P there are
M, Q C P with vM = AQ = x; we identify here P with @(P), where ¢:
P — P is the embedding). Then the embedding preserves all suprema and
infima existing in P (Schmidt, 1956).

Henceforth, we denote [a, b]p = {x € Pla < x < b} and [c¢, d]p =
{x € Ple < x <d} fora b € Pand ¢, d € P. Similarly for other
closed intervals.

Lemma 1.1. For the interval topology t; on a poset P and the interval
topology T; on the MacNeille completion P of P, the following conditions
are satisfied:

()wuNP=r1.

(ii) T is T» = 1; is Th.

(iii) 1; is T> does not imply 1; is 7.

(iv) If P is a lattice, then [a, b]p N [c¢, d]p = 0 iff [a, b]p N [c, d]p =
0; a, b, ¢, d € P (similarly for all closed intervals).

Proof. (i) This is obvious. Observing only that for a, b € P we have
[a, b]p N P = Ny<a=b=yxyer[X, y]p. Similarly for other closed intervals.

(i1) It follows trivially from (a).

(ii1) Suppose P is a poset with Hausdorff, not regular, interval topology
7, [for an example of such P see Erné (1980)]. Assume that T; on P is T».
Then 7; is regular and by (a), T; = T; N P is also regular, a contradiction.
We conclude T; is not T».

(iv) Suppose x € [a, b]p N [c, d]p. Then conditions ¢ v ¢ = x = b A
dimply a v ¢, b Ad €a, blp N [c, d]r

We say that a net (xq)ace of elements of P (€ is a directed set) order
converges to a point x € P if there exist nets (#q)oct, (Vo)ace C P such that
Uo = Xa = vq for all o and (uo)ace is nondecreasing with supremum wx,
(Va)ace is noincreasing with infimum x. We write uo T x, v 4 x, and xo “
x. The finest (biggest) topology on P such that xq © & implies topological
convergence is called an order topology on P, denoted T,. On every lattice,
T C T, [i.€, Xa 9y implies xq 5 x and if T; is T», then T; = 1, (e.g., Erne
and Riecanova, 1995)]. Thus, if L is a lattice, then for every. element x of
its MacNeille completion L there is a net (xq)o C L with xq Sx Actually,
if x € L, then there exists either @ # M C Lwithv M =x,or0 # Q C L
with A QO = x. We put xo = v a for all finite & C M, or xo = A @ for all
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finite &« C Q. Then xo T x or xy 4 x. In both cases xq 9 x (in L), which
T
implies xa — x.

2. BOUNDED LATTICES WITH SEPARATED INTERVALS

Definition 2.1. We say that a bounded lattice L has separated intervals
if given any two disjoint intervals [a, b], [¢, d] C L, the lattice L can be
covered by a finite number of closed intervals each of which is disjoint with
at least one of the intervals [a, b] and [c, d].

If a lattice L is bounded, then we denote by 0 the smallest element and
by 1 the largest element of L. It should be noted that if L = Uj=; [ax bi]L,
then the MacNeille completion L = Uf=; [ar, bili. Actually, if x €
L\Ui-, [a, bi]i € T1, then there exists (Xq)o C L with X —> x, which implies
that there exists o such that x, € L\U [ax, bi]; € L\L for all o = o,
a contradiction.

Lemma 2.2. The interval topology T; on a complete lattice L is Hausdorff
iff L has separated intervals.

Proof. (1) Suppose that t; is Hausdorft and [a, b] [¢, d] C L are disjoint.
Since T; is compact and normal, there are disjoint sets from the open base
of Ti

au = L\kL_J1 [2r, Vi), V= L\IEJ1 [wi, zi]

such that [a, b] C U and [¢, d] C V. Thus L = (Uk=1 [ux, vi]) U (UFL
[wi, z1]) and each of the intervals [ux, vi], [wi, zi] is disjoint with at least one
of [a, b] and [c, d].

(2) Since for x, y € Lwith x # y the singletons {x}, {y} are disjoint closed
intervals in L, the condition L has separated intervals implies 1; is Hausdorff.

Theorem 2.3. Let a bounded lattice L have separated intervals. Then the
interval topology T;on the MacNeille completion L of L is Hausdorff (normal).

Proof Let x # y and x, y € L {0, 1}. Then there exists u € L with
u<xand u £y (or u < yand u £ x). Hence x € [u, 1]; and y € L\
[u, 1] €. Let M, 0 C Lwithv M = A Q = y. Letthe sete = {aa C M
U Qla is finite and oo N M # 0 # o N Q} be directed by set inclusion.
Denote yo = v a N Mand ze = Ao N Q for alla € e. ThenyaTyand
Za ¥+ 3. Suppose that for all o € € there ex1st ua & L\[u, 1]; such that y, <

Uo, = zo. Then uq “ y (in L) and hence uq —> y, a contradiction. We conclude
that there exists ap € € such that [yo, Zo,]i C L\[u, 1]z. Tt follows that
Yoo, Zaglz N [u, 1]z = 0. By the assumption there exist ux, vk, wi, z7 € L
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such that L = (Uk=1 [uk, vi]r) U (UL [wy, z]r) and  [uk, vile N [ Yags
Zogl = 0, [wi, zle N [u, 1l =0,fork=1,...,n1=1,..., m It follows
that L = (U{=1 [ux, w]z) U (U [ws, z]z) and each of the intervals [us,
vili, [Wi, zile (k= 1, ...,n; 1 =1..., m) includes at most one of the points
x and y.

Suppose now x = 0 and y # 0. Then there exists v € L with 0 # v <
». Moreover, 0 # v implies that there exists u € L with v £ u. We conclude
that [0, u]r N [v, 1] = 0 and y € [v, 1];. Now, by the assumption, L =
Uk=1 [ax bi]r and each of the intervals [ax, bi]. is disjoint with at least one
of [0, u], and [v, 1].. It follows that L = Ul [ay biJi and each of the
intervals [ax, bi]i, includes at most one of the points x and y. Similarly if
y=0and x # 0.

3. QUANTUM LOGICS WITH SEPARATED INTERVALS
ATOMICITY

Definition 3.1 An ortholattice 1is a lattice L with a least element 0 and
a greatest element 1 and with a unary operation ’ called orthocomplementation
such that for all ¢, b € L

(1) (@) = a

(i1)) a < b implies b’ < a'

(i) ana =1

A pair a, b € L is called orthogonal if @ =< b'. An ortholattice in which
foralla, b € L, if a < b, then b = a v (a' A b) (the orthomodular law), is
called an orthomodular lattice (quantum logic).

An orthomodular lattice is a Boolean algebra iff it is a distributive
lattice. A maximal Boolean subalgebra of an orthomodular lattice L is called
a block.

An ortholattice L is atomic if every nonzero element of L is over an
atom and L is atomistic if every element of L is the supremum of all atoms
under it. An orthomodular lattice L is atomic iff L is atomistic. On the other
hand, there are atomic ortholattices which are not atomistic (Kalmbach, 1983).

It is known that the MacNeille completion of an orthomodular lattice
need not be orthomodular. On the other hand, there are some positive results on
orthomodular MacNeille completions (e.g., Harding, 1993; Riecanova, 1994).

Theorem 3.2. (Riecanova, 1994). For an ortholattice L the following
conditions are equivalent.

(i) L and the MacNeille completion L of L are orthomodular lattices.

(i1) For all M} C M, C L there are orthogonal sets O; C 0> C L (i.e.,
x < y*forall x # y_x, y € 0») such that M, = Q) and M, = Q.. Here, for
any M C L, weput M = {y € LIx < y for all x € M}.
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Note that for M, O C Lwe have M = Qiff v M = v Q in the MacNeille
completion L for L.

Theorem 3.3. For an atomistic ortholattice. L, the following conditions
are equivalent:

(i) The interval topology T; on the MacNeille completion L of L is
Hausdorff.

(i1) L has separated intervals.

(iii) For every pair of disjoint closed intervals [a, b]z, [¢, d]r C L there
are atoms py, ¢ € L(k=1,...,n; 1 =1..., m), such that L = (Uj=,
[pr 1]10) U (UL [0, ¢7]r) and each of the intervals [pi, 1]z [0, ¢i]L is
disjoint with at least one of [a, b]. and [c, d];.

Proof. (1) = (iii): Suppose that [a, b]r and [c, d]r are disjoint intervals
in L Then [a, b]z N [¢, d]; = 0. By Lemma 2.2 there exist ux, vk, wi, z1 €
L such that L = (U= [ug vilz) U (U1 [wy, z]2) and [ug, vilz N [¢, d]; =
Ofork=1,...,naswellas[w, z]t N [a, bl =0for L =1,..., m

For k =1, 2, ..., n, the condition [u, ur]; N [¢, d]; = 0 is equivalent
to ux v ¢ £ vi A d, which is equivalent to: either ux £ vi A d or ¢ £ v A
d. The condition ur % vi A d is equivalent to the existence of an atom ax €
L such that ax < ur and ar % d Thus ar < ur < v =< 1 and [ax, 1] N
[¢, d]r = 0. Then we can consider [ax, 1]z instead of [uy, vi]r. The condition
¢ £ v A d is equivalent to the existence of an atom b € L with b = v,
and bt 2 ¢}. Then 0 < u; < v < bitand [0, bE]; N [¢, d]; = 0. In this
case we can consider [0, b ]z instead of [uk, vir.

Similarly we can consider [¢;, 1]7 or [0, dzl])z instead of [wy, z]z, for
[ =1, ..., mand some atoms ¢;, d; € L.

Since for any atoms a, b € L we have [a, 1]; N L = [a, 1]; and
[0, b1z N L = [0, b],, we can conclude that (iii) is satisfied.

(iii) = (ii) is obvious.

(i1) = (i) follows by Theorem 2.3.

Since the MacNeille completion Bof any Boolean algebra B isa complete
Boolean algebra and B is atomic iff B is atomic, we have that T; on B is T»
iff T, on B is T». We obtain the following corollary:

Corollary 3.4. A Boolean algebra B is atomic iff B has separated intervals
iff T, on B is Hausdorff.

An atom of a block of an orthomodular lattice L is also an atom of L
On the other hand, if L is an atomic orthomodular lattice, then, in general,
every block in L need not be atomic. For example, on the complete atomic
orthomodular lattice L(H) of all closed linear subspaces of a complex separa-
ble infinite-dimensional Hilbert space H the range of the spectral measure
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corresponding to a self-adjoint operator with a simple-continuous spectrum
(e.g., the ‘position’ or ‘momentum’ operator) is an atomless block of L(H)
(Beltrametti and Cassinclli, 1981, pp. 21, 38).

Theorem 3.5. For an orthomodular lattice L with orthomodular MacNeille
completion L, the following conditions are equivalent:

(a) T, on L and T; on L are Hausdorff.

(b) L has separated intervals.

(c) L is atomic with separated intervals.

(d) For every pair of disjoint closed intervals [a, b]., [¢, d]; C L there
are atoms py, ¢ € L(k=1,...,n; 1 =1, ..., m) such that L = (Uj=,
[pe 110 U (U, [0, ¢7]z) and each of the intervals [p, 1]z, [0, ¢ i1z is
disjoint with at least one of [@, b]r and [c, d];.

If one of the conditions («)—(d) holds, then all blocks in L and L are
atomic. Moreover, every block B of L is the MacNeille completion of the
block B = B N L; B is isomorphic to the power set of some maximal
orthogonal set of atoms of L and it is a MacNeille completion of a block in L.

Proof. The condition (a) 1mphes that every block 1n L 1s atomic. This
is because for the interval topology 8 on B we have 1 = ¥ n B (since B
is subcomplete in L) hence t is T>. Moreover, every atom of B is an atom
of L and hence an atom of L Clearly, the set of all atoms of B is a maximal
orthogonal set of atoms of L (i.e., the set of all atoms of a block B = B N
L of L). Since B is complete and every x € B is a supremum of atoms of
B, we conclude that B is the MacNeille completion of the block B = BNL

If T, on L is T, then L is atomic and hence atomistic. Thus (a) = (b),
(c), and (d) by Theorem 3.3. It is obvious that (c) = (b) and (d) = (b). By
Theorem 2.3, (b) = (a).

Corollary 3.6. For a complete orthomodular lattice L the following
conditions are equivalent:

(a) T, on L is Hausdorff.

(b) L has separated intervals.

(c) L is atomic with separated intervals.

(d) For every pair of disjoint closed intervals [a, b]., [¢, d]. C L there
are atoms py, ¢ € L(k =1, ..., n, I =1, ..., m) such that L =
(Ul=1, [pw 111) U (U1 [0, g711) and each of the intervals [px 11z,
[0, q;l]L is disjoint with at least one of [a, b]z and [c, d]i.

Proof. The proof is straightforward. Observing only that if T; on L is
Hausdorff, then L is atomic, since every block of L is atomic.

Note that if all blocks of a (complete) orthomodular lattice L are atomic,
then 1; on L need not be Hausdorff; for example, L(H), where H is a finite-
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dimensional Hilbert space with dim H = 2. Evidently, t; on L(H) is not 7>
[since L(H) does not have separated intervals], but every block of L(H)
is atomic.

Example 3.7. Examples of orthomodular lattices which satisfy conditions
of Corollary 3.6 are compact order-topological orthomodular lattices. Almost
orthogonal atomic orthomodular lattices satisfy conditions of Theorem 3.5
[see Erné and Riecanova (1995) for further references].
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