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It is well known that a Boolean algebra B is atomic (atomistic) iff the interval
topology on B is Hausdorff. But this no longer holds for orthomodular lattices
(quantum logics). There exist (even complete) atomic orthomodular lattices the
interval topology of which is not Hausdorff. We show that another characterization
of atomicity for Boolean algebras is the following: A Boolean algebra B is atomic
iff B has separated intervals. Furthermore, we show that the interval topology
on a complete orthomodular lattice L is Hausdorff iff L has separated intervals
iff L is atomic and it has separated intervals. An orthomodular lattice L with
orthomodular MacNeille completion LÃhas separated intervals iff L is atomic and
it has separated intervals iff the interval topology on LÃis Hausdorff.

1. PRELIMINARIES

Recall that the interval topology t i on a poset P is the smallest topology

in which all closed intervals

[a) 5 {x P P | a # x}, (a] 5 {x P P | x # a}

[a, a] 5 {a}, [a, b] 5 {x P P | a # x # b}, and P

are closed sets. A base for the closed sets is then the collection of all finite

unions of such intervals. Thus the set complements of finite unions of closed

intervals generate the open base of t i. Evidently, t i on any poset P is T1 (each

singleton is closed in t i).

By theorem of Frink (1942) the interval topology t i on a lattice is

compact iff L is complete. Observing that a compact Hausdorff topology
is always normal, we infer that the separation axioms Hausdorff, regular,
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completely regular, and normal are equivalent for the interval topology t i on

every complete lattice.

Every poset P can be embedded into a complete lattice. A complete

lattice PÃinto which P is embedded is called a MacNeille completion of P
if P is supremum and infimum dense in PÃ(i.e., for every x P PÃthere are

M, Q # P with Ú M 5 Ù Q 5 x; we identify here P with w (P), where w :

P ® PÃis the embedding). Then the embedding preserves all suprema and

infima existing in P (Schmidt, 1956).

Henceforth, we denote [a, b]P 5 {x P P | a # x # b} and [c, d]PÃ 5
{x P PÃ| c # x # d} for a, b P P and c, d P PÃ. Similarly for other

closed intervals.

Lemma 1.1. For the interval topology t i on a poset P and the interval

topology t Ãi on the MacNeille completion PÃof P, the following conditions

are satisfied:

(i) t Ãi ù P 5 t i.

(ii) t Ãi is T2 Þ t i is T2.

(iii) t i is T2 does not imply t Ãi is T2.

(iv) If P is a lattice, then [a, b]P ù [c, d]P 5 0¤ iff [a, b]PÃ ù [c, d]PÃ 5
0¤; a, b, c, d P P (similarly for all closed intervals).

Proof. (i) This is obvious. Observing only that for a, b P PÃwe have

[a, b]PÃ ù P 5 ù x # a # b # y,x,y P P[x, y]P. Similarly for other closed intervals.

(ii) It follows trivially from (a).

(iii) Suppose P is a poset with Hausdorff, not regular, interval topology

t i [for an example of such P see ErneÂ(1980)]. Assume that t Ãi on PÃis T2.

Then t Ãi is regular and by (a), t i 5 t Ãi ù P is also regular, a contradiction.

We conclude t Ãi is not T2.

(iv) Suppose x P [a, b]PÃ ù [c, d ]PÃ. Then conditions a Ú c # x # b Ù
d imply a Ú c, b Ù d P [a, b]P ù [c, d ]P.

We say that a net (x a ) a P % of elements of P (% is a directed set) order
converges to a point x P P if there exist nets (u a ) a P %, (v a ) a P % # P such that

u a # x a # v a for all a and (u a ) a P % is nondecreasing with supremum x,

(v a ) a P % is noincreasing with infimum x. We write u a - x, v a x x, and x a ®
(o)

x. The finest (biggest) topology on P such that x a ®
(o)

x implies topological

convergence is called an order topology on P, denoted t o. On every lattice,

t i # t o [i.e, x a ®
(o)

x implies x a ®
t i

x and if t i is T2, then t i 5 t o (e.g., ErneÂ

and RiecÆanovaÂ, 1995)]. Thus, if L is a lattice, then for every element x of

its MacNeille completion LÃthere is a net (x a ) a # L with x a ®
t Ãi

x. Actually,

if x P LÃ, then there exists either 0¤ Þ M # L with Ú M 5 x, or 0¤ Þ Q # L

with Ù Q 5 x. We put x a 5 Ú a for all finite a # M, or x a 5 Ù a for all
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finite a # Q. Then x a - x or x a x x. In both cases x a ®
(o)

x (in LÃ), which

implies x a ®
t Ãi

x.

2. BOUNDED LATTICES WITH SEPARATED INTERVALS

Definition 2.1. We say that a bounded lattice L has separated intervals
if given any two disjoint intervals [a, b], [c, d] # L, the lattice L can be

covered by a finite number of closed intervals each of which is disjoint with

at least one of the intervals [a, b] and [c, d].

If a lattice L is bounded, then we denote by 0 the smallest element and
by 1 the largest element of L. It should be noted that if L 5 ø u

k 5 1 [ak bk]L ,

then the MacNeille completion LÃ 5 ø u
k 5 1 [ak , bk]LÃ. Actually, if x P

LÃ\ ø u
k 5 1 [ak , bk]LÃP t Ã1, then there exists (x a ) a # L with x a ®

t Ãi
x, which implies

that there exists a 0 such that x a P LÃ\ ø [ak , bk]LÃ # LÃ\L for all a $ a 0,

a contradiction.

Lemma 2.2. The interval topology t i on a complete lattice L is Hausdorff
iff L has separated intervals.

Proof. (1) Suppose that t i is Hausdorff and [a, b] [c, d] # L are disjoint.

Since t i is compact and normal, there are disjoint sets from the open base

of t i

8 5 L \ ø
n

k 5 1
[uk, vk], 9 5 L \ ø

m

l 5 1
[wl, zl]

such that [a, b] # 8 and [c, d] # 9. Thus L 5 ( ø n
k 5 1 [uk , vk]) ø ( ø m

l 5 1

[wl, zl]) and each of the intervals [uk , vk], [wl, zl] is disjoint with at least one

of [a, b] and [c, d].
(2) Since for x, y P L with x Þ y the singletons {x}, {y} are disjoint closed

intervals in L, the condition L has separated intervals implies t i is Hausdorff.

Theorem 2.3. Let a bounded lattice L have separated intervals. Then the

interval topology t Ãi on the MacNeille completion LÃof L is Hausdorff (normal).

Proof. Let x Þ y and x, y P LÃ{0, 1}. Then there exists u P L with
u # x and u # ¤ y (or u # y and u # ¤ x). Hence x P [u, 1]LÃ and y P LÃ\
[u, 1]LÃ P t Ãi. Let M, Q # L with Ú M 5 Ù Q 5 y. Let the set e 5 { a # M
ø Q | a is finite and a ù M Þ 0¤ Þ a ù Q} be directed by set inclusion.

Denote y a 5 Ú a ù M and z a 5 Ù a ù Q for all a P e . Then y a - y and

z a x y. Suppose that for all a P e there exist u a ¸ LÃ\ [u, 1]LÃsuch that y a #
u a # z a . Then u a ®

(o)
y (in LÃ) and hence u a ®

t Ãi
y, a contradiction. We conclude

that there exists a0 P e such that [y a 0, z a 0]LÃ # LÃ\ [u, 1]LÃ. It follows that

[y a 0, z a 0]LÃ ù [u, 1]LÃ 5 0¤. By the assumption there exist uk , vk , wl, zl P L



194 RiecÆanovaÂ

such that L 5 ( ø n
k 5 1 [uk, vk]L) ø ( ø m

l 5 1 [wl, zl]L) and [uk, vk]L ù [y a 0,

z a 0] 5 0¤, [wl, zl]L ù [u, 1]L 5 0¤, for k 5 1, . . . , n; l 5 1, . . . , m. It follows

that LÃ5 ( ø n
k 5 1 [uk, vk]LÃ) ø ( ø m

l 5 1 [wl, zl]LÃ) and each of the intervals [uk ,
vk]LÃ, [wl, zl]LÃ(k 5 1, . . . , n; l 5 1 . . . , m) includes at most one of the points

x and y.
Suppose now x 5 0 and y Þ 0. Then there exists v P L with 0 Þ v ,

y. Moreover, 0 Þ v implies that there exists u P L with v # ¤ u. We conclude

that [0, u]L ù [v, 1]L 5 0¤ and y P [v, 1]LÃ. Now, by the assumption, L 5
ø n

k 5 1 [ak, bk]L and each of the intervals [ak , bk]L is disjoint with at least one
of [0, u]L and [v, 1]L. It follows that LÃ5 ø u

k 5 1 [ak, bk]LÃ and each of the

intervals [ak , bk]LÃ, includes at most one of the points x and y. Similarly if

y 5 0 and x Þ 0.

3. QUANTUM LOGICS WITH SEPARATED INTERVALS
ATOMICITY

Definition 3.1 An ortholattice is a lattice L with a least element 0 and

a greatest element 1 and with a unary operation 8 called orthocomplementation

such that for all a, b P L

(i) (a8)8 5 a
(ii) a # b implies b8 # a8
(iii) a Ù a8 5 1

A pair a, b P L is called orthogonal if a # b8. An ortholattice in which

for all a, b P L, if a # b, then b 5 a Ú (a8 Ù b) (the orthomodular law), is
called an orthomodular lattice (quantum logic).

An orthomodular lattice is a Boolean algebra iff it is a distributive

lattice. A maximal Boolean subalgebra of an orthomodular lattice L is called

a block.
An ortholattice L is atomic if every nonzero element of L is over an

atom and L is atomistic if every element of L is the supremum of all atoms
under it. An orthomodular lattice L is atomic iff L is atomistic. On the other

hand, there are atomic ortholattices which are not atomistic (Kalmbach, 1983).

It is known that the MacNeille completion of an orthomodular lattice

need not be orthomodular. On the other hand, there are some positive results on

orthomodular MacNeille completions (e.g., Harding, 1993; RiecÆanovaÂ, 1994).

Theorem 3.2. (RiecÆanovaÂ, 1994). For an ortholattice L the following

conditions are equivalent.
(i) L and the MacNeille completion LÃof L are orthomodular lattices.

(ii) For all M1 # M2 # L there are orthogonal sets Q1 # Q2 # L (i.e.,

x # y ’ for all x Þ y, x, y P Q2) such that M1 5 Q1 and M2 5 Q2. Here, for

any M # L, we put M 5 {y P L | x # y for all x P M }.
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Note that for M, Q # L we have M 5 Q iff Ú M 5 Ú Q in the MacNeille

completion LÃfor L.

Theorem 3.3. For an atomistic ortholattice. L, the following conditions
are equivalent:

(i) The interval topology t Ãi on the MacNeille completion LÃof L is

Hausdorff.

(ii) L has separated intervals.

(iii) For every pair of disjoint closed intervals [a, b]L , [c, d]L # L there
are atoms pk , ql P L (k 5 1, . . . , n; l 5 1 . . . , m), such that L 5 ( ø n

k 5 1

[ pk, 1]L) ø ( ø m
l 5 1 [0, q ’

l ]L) and each of the intervals [pk, 1]L, [0, q ’
l ]L is

disjoint with at least one of [a, b]L and [c, d]L.

Proof. (i) Þ (iii): Suppose that [a, b]L and [c, d]L are disjoint intervals

in L. Then [a, b]LÃ ù [c, d]LÃ 5 0¤. By Lemma 2.2 there exist uk , vk , wl , zl P
LÃsuch that LÃ5 ( ø n

k 5 1 [uk, vk]LÃ) ø ( ø m
l 5 1 [wl, zl]LÃ) and [uk , vk]LÃ ù [c, d]LÃ 5

0¤ for k 5 1, . . . , n, as well as [wl, zl]LÃ ù [a, b]LÃ 5 0¤ for + 5 1, . . . , m.
For k 5 1, 2, . . . , n, the condition [uk , uk]LÃù [c, d]LÃ 5 0¤ is equivalent

to uk Ú c # ¤ vk Ù d, which is equivalent to: either uk # ¤ vk Ù d or c # ¤ vk Ù
d. The condition uk # ¤ vk Ù d is equivalent to the existence of an atom ak P
L such that ak # uk and ak # ¤ d. Thus ak # uk # vk # 1 and [ak , 1]LÃ ù
[c, d]LÃ 5 0¤. Then we can consider [ak , 1]LÃinstead of [uk , vk]L. The condition

c # ¤ vk Ù d is equivalent to the existence of an atom bk P L with b ’
k $ vk

and b ’
k $ ¤ c}. Then 0 # uk # vk # b ’

k and [0, b ’
k ]LÃ ù [c, d]LÃ 5 0¤. In this

case we can consider [0, b ’
k ]LÃinstead of [uk , vk]LÃ.

Similarly we can consider [cl , 1]LÃor [0, d ’
l ])LÃinstead of [wl , zl]LÃ, for

l 5 1, . . . , m and some atoms cl , dl P L.
Since for any atoms a, b P L we have [a, 1]LÃ ù L 5 [a, 1]LÃ and

[0, b ’ ]LÃ ù L 5 [0, b]L , we can conclude that (iii) is satisfied.

(iii) Þ (ii) is obvious.

(ii) Þ (i) follows by Theorem 2.3.

Since the MacNeille completion BÃof any Boolean algebra B is a complete
Boolean algebra and BÃis atomic iff B is atomic, we have that t Ãi on BÃis T2

iff t i on B is T2. We obtain the following corollary:

Corollary 3.4. A Boolean algebra B is atomic iff B has separated intervals

iff t i on B is Hausdorff.

An atom of a block of an orthomodular lattice L is also an atom of L.
On the other hand, if L is an atomic orthomodular lattice, then, in general,

every block in L need not be atomic. For example, on the complete atomic

orthomodular lattice L (H ) of all closed linear subspaces of a complex separa-

ble infinite-dimensional Hilbert space H the range of the spectral measure
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corresponding to a self-adjoint operator with a simple-continuous spectrum

(e.g., the `position’ or `momentum’ operator) is an atomless block of L (H )

(Beltrametti and Cassinclli, 1981, pp. 21, 38).

Theorem 3.5. For an orthomodula r lattice L with orthomodular MacNeille

completion LÃ, the following conditions are equivalent:

(a) t i on L and t Ãi on LÃare Hausdorff.

(b) L has separated intervals.

(c) L is atomic with separated intervals.
(d) For every pair of disjoint closed intervals [a, b]L , [c, d]LÃ # L there

are atoms pk , ql P L (k 5 1, . . . , n; l 5 1, . . . , m) such that L 5 ( ø n
k 5 1

[pk, 1]L) ø ( ø m
l 5 1 [0, q ’

l ]LÃ) and each of the intervals [ pk, 1]L, [0, q ’
l ]LÃ is

disjoint with at least one of [a, b]L and [c, d]L.

If one of the conditions (a)±(d ) holds, then all blocks in L and LÃare

atomic. Moreover, every block BÃof LÃis the MacNeille completion of the
block B 5 BÃ ù L; BÃis isomorphic to the power set of some maximal

orthogonal set of atoms of L and it is a MacNeille completion of a block in L.

Proof. The condition (a) implies that every block in LÃis atomic. This

is because for the interval topology t BÃ
i on BÃwe have t BÃ

i 5 t BÃ
i ù BÃ(since BÃ

is subcomplete in LÃ), hence t BÃ
i is T2. Moreover, every atom of BÃis an atom

of LÃand hence an atom of L. Clearly, the set of all atoms of BÃis a maximal

orthogonal set of atoms of L (i.e., the set of all atoms of a block B 5 BÃù
L of L). Since BÃis complete and every x P BÃis a supremum of atoms of

B, we conclude that BÃis the MacNeille completion of the block B 5 BÃù L.
If t Ãi on LÃis T2, then LÃis atomic and hence atomistic. Thus (a) Þ (b),

(c), and (d) by Theorem 3.3. It is obvious that (c) Þ (b) and (d) Þ (b). By
Theorem 2.3, (b) Þ (a).

Corollary 3.6. For a complete orthomodular lattice L the following

conditions are equivalent:

(a) t i on L is Hausdorff.

(b) L has separated intervals.
(c) L is atomic with separated intervals.

(d) For every pair of disjoint closed intervals [a, b]L , [c, d]L # L there

are atoms pk , ql P L (k 5 1, . . . , n; l 5 1, . . . , m) such that L 5
( ø n

k 5 1, [ pk, 1]L) ø ( ø m
l 5 1 [0, g ’

l ]L) and each of the intervals [pk, 1]L,

[0, q ’
l ]L is disjoint with at least one of [a, b]L and [c, d]L.

Proof. The proof is straightforward. Observing only that if t i on L is

Hausdorff, then L is atomic, since every block of L is atomic.

Note that if all blocks of a (complete) orthomodular lattice L are atomic,

then t i on L need not be Hausdorff; for example, L (H ), where H is a finite-
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dimensional Hilbert space with dim H $ 2. Evidently, t i on L (H ) is not T2

[since L (H ) does not have separated intervals], but every block of L (H )

is atomic.

Example 3.7. Examples of orthomodular lattices which satisfy conditions

of Corollary 3.6 are compact order-topolog ical orthomodular lattices. Almost

orthogonal atomic orthomodular lattices satisfy conditions of Theorem 3.5

[see ErneÂand RiecÆanovaÂ(1995) for further references].
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